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Predicting Educational Opportunity within the
United States using Satellite Imagery

Greg DePaul & Hugo Valdivia

Abstract—It is a sizable challenge to collect education
data from school districts in the United States. The Stanford
Education Data Archive (SEDA) stores a wide range of
covariate data for over 12,000 school districts all over
the US; however, due to the difficulty of gathering such
information, the data is incomplete. Our project uses
Satellite Imagery in order to construct accurate measures
of education opportunity all over the United States. We
create a supervised model that takes in satellite images and
incomplete structured data for a particular school district
and produces the performance of that school district,
as measured by the National Assessment of Educational
Progress scale. Our best model achieves a 0.629 R2 on our
test set, indicating that we have successfully developed a
regression model.

I. INTRODUCTION AND RELATED WORKS

We set out to build a model that, given satellite imagery
and structured covariate data, is able to provide a rea-
sonable estimate of the performance of a school district,
as measured by the National Assessment of Educational
Progress (NAEP) scale. This is done in the hopes of
discovering critical features in satellite imagery, that have
been used to predict poverty as in [1], which can serve
as determinants of educational opportunity.

In [1], researchers working with Stefano Ermon, of
Stanford University, applied deep learning methods on
Satellite imagery in order to develop a regression model
of income for the countries of India and Bangladesh. We
viewed this work very critically when it came to applying
our own methods. For their results, Ermon et al. were able
to achieve R2 values of 0.3251 and 0.1080 for India and
Bangladesh, respectively, which gives us an expectation
for our own model’s achievable performance.

While Dr. Ermon’s paper considers the component
networks for learning each of the satellite images sep-
arately with no attempt to combine these results into a
composite estimate for poverty. In order to incorporate
such a method to composite multiple networks that have
the same output but different input features, we sought
a network model like an ensemble network, mixture
network, as well as a gated network [2]. We eventually
decided, based on this paper, that a GatedCNN was the
best choice to base our model.

II. DESCRIPTION OF DATA SET

A. Structured Data

Our structured data is provided by the Stanford Ed-
ucation Data Archive (SEDA), which compiles a wide

range of data describing educational performance for over
12,000 school districts within the United States. Some of
the information this data set provides us with is the key
set of features:

• School District ID
• Socioeconomic Status Composite Index
• Racial Diversity
• Mean Score of School District

These, however, are not the only attributes that are avail-
able; SEDA also provides over 150 additional features
(e.g., pupil-teacher ratio, percent of households with 5-17
year olds living in poverty, percent of adults with a BA
or higher, et cetera). We merged their main dataset with
their covariate dataset to arrive at data for 12,139 school
districts all over the United States.

The covariate dataset, however, was not perfect; around
12.3% of the entries were missing. To tackle this problem,
we tried a number of approaches. First, since all but 5
of the attributes were non-negative, we substituted all
of the missing entries with the value -1 in hopes that
our network would learn to discern the missing values.
Second, we tried to substitute the missing entries with
the mean value of the present entries. Thirdly, we tried
to delete all attributes which were missing any values;
in practice, this resulted in around 2,000 school districts.
Lastly, we set thresholds and deleted attributes that had
more missing entries than the threshold and then filled in
the then fewer missing values. Empirically, we found that
the best results came from substituting the mean.

B. Satellite Imagery

For our baseline model and eventually GatedCNN
model, we used Night-time Light Intensity Data available
from the Defense Meteorological Satellite Program Op-
erational Linescan System (DMSP-OLS) and the Visible
Infrared Imaging Radiometer Suite (VIIRS). Our more
generalized GatedCNN model makes use of the Daytime
Imaging available from the LandSat-8 dataset. The day-
time data allows the model to make a more accurate
measure based on the discernible pieces of infrastructure
while the night-time data provides inference on the rela-
tive level of wealth locally. These three sources of satellite
image data can be seen in Figure 1.

III. INITIAL APPROACH TO SOLUTION

A. Data Input:

For each school district, we identify its respective
Latitude / Longitude from a simple dictionary lookup. We
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(a) DMSP-OLS (b) VIIRS

(c) LandSat-8

Fig. 1. Satellite images selected from our four datasets, depicting the
greater Chicago area

then use this Lat / Long pair to identify a square image
for our DMSP-OLS, VIIRS and LANDSAT datasets. We
establish a pixel radius to be 10, which we see that since
VIIRS has twice the resolution as DMSP, we know we
should return 20x20 and 10x10 pictures available for
each Lat / Long pair from each dataset. On the other
hand, LANDSAT, with it’s high pixel density, yields the
largest image of size 600x600 of the local surrounding
area. To start our analysis for our model, we extracted a
single mean performance value for close to 12,000 school
districts. Given this number of data points, we used a 60-
20-20 splits for our train-dev-test sets.

B. Baseline Architecture:

For our baseline model, we employed a shallow feed
forward network, given that at the time, we had access
only to VIIRS and DMSP, so the images being processed
over were relatively small enough to be handled efficiently
in such a way. This architecture is composed of four
hidden layers, each with a ReLU activation function,
and predicts the mean NAEP score of the school district
located at the center Latitude / Longitude Pairing. This
model doesn’t include the categorical data for our data
set, but instead serves to give motivation as to whether
we can reliably draw education performance from such
imagery. To address a variance problem, we added L2-
regularization to our model.

C. Loss Function:

Drawing from the use of this particular loss function in
[1], we use Tensorflow’s preprogrammed version of the
Huber Loss with a delta of 1.0, which we found helped
to deal with outliers in our data set; intuitively, the Huber

Fig. 2. Baseline architecture

loss acts as squared error when the loss is small and as
absolute error when the loss is large. We began by using
a mean-squared error, but this proved to give us worse
performance than the Huber loss.

IV. INITIAL RESULTS

We found that a small feed-forward neural network
with 4 hidden layers could overfit the train data quite well;
however, this simply did not generalize to the validation
set. We did not have the ability to create more data in
this setting, so we tried regularization, to decrease our
variance. While we could achieve R2 values quite close to
1 on the train set, we could not achieve a positive R2 value
on the dev set; with our best model, the R2 value on the
dev set was approximately -0.65. Since we used a feed-
forward network that simply flattens an image and then
connects each value of the image to every neuron in the
hidden layers, this architecture is not ideal for capturing
the spatial relationships of images, so these results were to
be expected; however, they serve as a lower threshold for
our further analysis. We move to convolutional networks
in our final model, as these architectures are specifically
tailored to handle proximal relationships within an image.

V. INTRODUCING OUR ARCHITECTURE

A. GatedCNN Architecture:

Drawing from [2], for our model, we fine-tune
three CNN’s separately on our three different types of
satellite input data and then we have introduced a small
dense ’Gate’ to find a weighted function based on the
recommendation of the three networks. A GatedCNN
appealed to us because it’s effective for learning to
form an opinion on the recommendations of smaller
components, and then weighs them based on which
component it feels would best predict based on the image
input.

Two small convolutional networks are used for the
small pixelled DMSP and VIIRS images. The ResNet-
50 architecture pre-trained on ImageNet is used for
the LANDSAT Data. We experimented with the smaller
DenseNet121 architecture, but we found that the perfor-
mance was worse than the ResNet-50. We chose a linear
weighting network for the dense Gate, which we feel
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Fig. 3. GatedCNN architecture

is adequate to handle the recommendations of our three
Satellite inputs as well as the our survey features.

B. Data Augmentation

We perform augmentation of the images via the Keras
built-in ImageDataGenerator class; applied to randomly
rotate our train images between epochs. This rotates
the square image between 0 and 360 degrees and then
interpolates the remainder of the image to maintain its
dimensions. Given that we were training two convolu-
tional networks from scratch and fine-tuning a very deep
one, this step gave a huge boost to our performance. We
first tried vertical and horizontal flips, but we found that
the rotation setting allowed for the most generalization to
our validation set.

C. Hyperparameter Tuning

For our network, we had the typical parameters of
learning rate, batch size, and depth of our networks.
On the other hand, our network also introduced new
hyperparameters such as picture size (radius) and zoom
level, which then dictates the size of our input set.
We experimented with hyperparameters, especially at the
mercy of AWS, which had a tendency to crash when we
increased batch sizes past a certain threshold. Similarly,
we want hyperparameters like picture radius and zoom
level to be large enough to capture a lot of information,
but not too large to capture multiple schools as well as
making the network perform longer searches. For our
model, we ended choosing much of our hyperparameters
to maximize processing power on AWS. The concluding
hyperparameters are:

• Batch Size: 16 due to memory for the LANDSAT
model. VIIRS and DMSP had a size of 1024.

• Small Convnet Depth: 1 Conv Layer, 1 Pool, 2
Dense, which is necessary because the images are
small and also the input set is small.

• Learning Decay: Set to zero because this tended to
slow the network learning

• Image Radius: for DMSP and VIIRS, we chose an
approximate 10 mile radius, which equates to a
total radius of 10 pixels for VIIRS and 20 pixels
for DMSP. For LANDSAT, we simply used the
maximum radius possible, which is 600x600 pixel.

• Zoom Level: We played around with zoom levels
from 15 to 18. We found that zooming too far out
led to an image in which buildings and other features
became hard to distinguish, while a zoom level of
18 or more just left you with an image of the school
itself. We found that a zoom level of 17 led to the
best results for discerning features.

VI. FINAL RESULTS

To measure the effectiveness of our model, we used
R2 metric of accuracy to see how closely related our
regression model was to the actual performance of the
school districts. While we can achieve R2 values quite
close to 1 on the train set for individual models, the best
results on the validation set show that it is difficult to
generalize. As indicated by the Table in (4a), the Day-
time ResNet-50 model is the best individual model under
this metric, and our current best model on the validation
set is the gated model.

To gain a better understanding of our results, we
sought visualization to understand this high dimensional
problem. Figures (4b) and (4c) displays actual and the
predicted NAEP scores respectively in color for each plot-
able school district. The better the performance, the higher
on the color band towards red, while lower scores tend
to lean towards blue. Both models display a scale like
appearance, caused by a high density of scores that rank
yellow-green on the colormap, indicated most schools
perform within this margin.

We attempt to visualize the overall difference in model
performance, as seen in figure (4d). Immediately, we see
that our model scores differ from the true scores mostly
within the Californian basin as well as the North-Midwest.
We attribute this to schools in close proximity to one
another, while having vastly different performance. This
can be due to a variety of reasons, such as population
density.

A better way to see model performance, we found,
is plotting the frequency of school performances by
histogram (Figure 4e). Our model, in yellow, is able to
non-parametrically identify the mean of the actual score
performance well. However, we see evidence of bias,
which we attribute to the Gate estimating the schools
scores pessimistically.

VII. CONCLUSION

By our results, we see that it is possible to generalize
upon a local infrastructure to gain some insight into
education opportunity. By making use of a GatedCNN,
we were able to generalize over a diverse set of satellite
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Model Val Test

Night-lights DMSP CONV .052 .028
Night-lights VIIRS CONV .083 .060
Day-Time LANDSAT CONV .056 .055
GatedCNN Model w/o Struct Data .134 .134
Structured Data .613 .618
GatedCNN Model w/ Struct Data .632 .629

(a) Prediction R2 Accuracy

(b) Actual Performance

(c) Predicted Performance

(d) Absolute Differences

(e) Overlay of Distributions

Fig. 4. Comparison of Predicted Performance versus Actual Perfor-
mance

input features.

For the most part, it appeared DMSP was the least
likely to contribute to the Gate Model Prediction. When
we investigated it’s ability to predict, it fell incredibly
short compared to that of VIIRS and LANDSAT. This
could be due to interference to its measurements, possibly
the result of cloud coverage. Conversely, the LANDSAT
model which ran through ResNet-50 appeared to perform
the best and would thus earn a greater weight in the Gate
Prediction.

VIII. FUTURE WORK

We recommend the following directions for future work
on this topic:

• Better method for extrapolating over missing / sparse
data features. This would allow for using the more
structured data within SEDA to better predict model
performance.

• Alternative methods of interpreting performance by
bucketing schools and then classifying local infras-
tructure into those buckets.

IX. INSPIRATION AND CONTRIBUTION

Greg and Hugo met in an education seminar at Stanford
on ”Project Based Learning.” Their mutual dedication
to bettering education lead them to pursue this project
when they both teamed up for CS 230 : Deep Learning.
Greg was able to develop much of the input pipeline
for retrieving the satelite imaging as well as the visu-
alizations of the imagining. Hugo dedicated his time to
focus on developing the ResNet-50 model to discern the
information-rich LANDSAT. Together, they constructed
the GatedCNN which lead to their results.

The code for this project can be accessed at

https://github.com/valdivia4/cs230project.git
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