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Abstract

We survey the necessary architectural develops that lead to the development of FlowSSM [I]. We also engineer a
sequence model to perform the integration of the identified flow trajectories surrounding a mean shape.

1 Occupancy Probability Function
Our work began by exploring the origins of IM-Net [2]. Formally the architecture is as follows. IM-Net is a function

fo:R3xR% - [0,1]

that takes a parameter #. This parameter 6 is formally the weights and biases of the following neural network:
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Figure 1: IM Net

The output of the function is mean to represent the following:

fo(z,latent space of shape S) =P(z € S)

This model is thusly named the occupancy probability model, as stated in [1].
In order to train this network, we need to define the following quantities:

e S := set of points sampled from the target shape

0 if point p is outside of the shape

o F(p) :{

1 otherwise

e To compensate for the density change, we assign a weight w,, to each sampled point p, representing the sampling density
near p.

Now we can define the loss function to be :

Dpes [fo(p) = F(p)|* - w,

L(0) := S o,

And therefore we optimize over this very loss function.



2 How to Train the Latent Space?

2.1 Procrustes Alignment

In order to develop a latent space, we need to consider the relative scope of this task. Do we want our shapes to be
translationally invariant? Rotationally invariant? In order for a machine learning model to understand such a task, there
would need to be the following changes:

e Develop an architecture that is invariant under rotations or translations (Very difficult theoretically)
e Augment the training set to account for all possibly achievable translations and rotations (Very expensive)
For the purposes of this project, we simply use a mean shapes (developed using traditional methods or more interesting

methods [3]), and then train only on these aligned shapes.

2.2 Convert to Voxel Representation

We then take every aligned shape and develop a voxel representation of that shape.

Definition 2.1. A wvozel representation is a binary representation of a shape S within 2¢%4*%. There is a surjection from the
bounding box surrounding the shape S to the voxel representation. We denote d as the dimension of the voxel representation.

Note 2.2. The code I have developed for creating a 64 dimensional vozel representation takes quite a long time. I am
confidant my code could be improved. Software packages like Open3D and Trimesh ”offer” vozel conversions, but these tend
not to be aligned to any bounding box, which of course is a problem.

Below, you will see a Voxel representation for the liver of dimension d = 32.
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(a) Original Point Cloud (b) Voxelized Mesh

Figure 2: Convert Meshes in R3 to Voxel Representations 24X x4

2.3 Use an Autoencoder

Once we have a voxel representation, we then take that representation through an autoencoder.

Figure 3: 32 Bit Voxel Encoding



3 Transition from Probability to Deformation Velocity

3.1 Differential Equation Formulation

Within [4], they restate this problem of identifying the boundary via integration over a flow field. We’ve taken the liberty
of reworking this formulation as the following boundary value problem: We need to learn a flow function v(x,t) := fy(x,t2)
such that:

' =v(x,t)
z(0) = template shape
x(1) = target shape

3.2 ShapeFlow Method

The template shape described as x(0) is generated by the method described in [5]. Only one template is used to represent a
given shape space.

3.3 Euler’s Method Formulation

We recall Euler’s first order method of integrating as

Tnt1 = Tp + Ay - 0(xp, )

Therefore, we can rewrite this as the following computational block:
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Figure 4: Euclid Block

Then we can allow a certain number of these blocks to be sequenced together, with an accompanying parameter of time:
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Figure 5: Sequence of Euclid Blocks
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This sequence is our final model of consideration.
To measure the performance of this model, we use the Chamfer Distance:

Definition 3.1. The correspondence-free, symmetric point-set to point-set Chamfer Distance C between randomly sampled
surface points of the target P; C X; and deformed, sampled surface points of the template Py = ®*(Pr C T,1):
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4 Comparison to Tamaz / Liidke Work

Model Average Symmetric Surface Average Chamfer
Femur FlowSSM
Our Work 0.28572568 4 0.048069667
Liver  FlowSSM
Our Work 0.45721212 4+ 0.099601954
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