
Furthering FlowSSMs Models

Greg DePaul, Ryan A. Anderson, Shizhe Xu, Suresh Kumar Choudhary,

July 2023

Abstract

We survey the necessary architectural develops that lead to the development of FlowSSM [1]. We also engineer a
sequence model to perform the integration of the identified flow trajectories surrounding a mean shape.

1 Occupancy Probability Function

Our work began by exploring the origins of IM-Net [2]. Formally the architecture is as follows. IM-Net is a function

fθ : R3 × Rd → [0, 1]

that takes a parameter θ. This parameter θ is formally the weights and biases of the following neural network:

Figure 1: IM Net

The output of the function is mean to represent the following:

fθ(x, latent space of shape S) = P(x ∈ S)

This model is thusly named the occupancy probability model, as stated in [1].
In order to train this network, we need to define the following quantities:

• S := set of points sampled from the target shape

• F(p) :=

{
0 if point p is outside of the shape

1 otherwise

• To compensate for the density change, we assign a weight wp to each sampled point p, representing the sampling density
near p.

Now we can define the loss function to be :

L(θ) :=
∑

p∈S |fθ(p)−F(p)|2 · wp∑
p∈S wp

And therefore we optimize over this very loss function.

1

2 How to Train the Latent Space?

2.1 Procrustes Alignment

In order to develop a latent space, we need to consider the relative scope of this task. Do we want our shapes to be
translationally invariant? Rotationally invariant? In order for a machine learning model to understand such a task, there
would need to be the following changes:

• Develop an architecture that is invariant under rotations or translations (Very difficult theoretically)

• Augment the training set to account for all possibly achievable translations and rotations (Very expensive)

For the purposes of this project, we simply use a mean shapes (developed using traditional methods or more interesting
methods [3]), and then train only on these aligned shapes.

2.2 Convert to Voxel Representation

We then take every aligned shape and develop a voxel representation of that shape.

Definition 2.1. A voxel representation is a binary representation of a shape S within 2d×d×d. There is a surjection from the
bounding box surrounding the shape S to the voxel representation. We denote d as the dimension of the voxel representation.

Note 2.2. The code I have developed for creating a 64 dimensional voxel representation takes quite a long time. I am
confidant my code could be improved. Software packages like Open3D and Trimesh ”offer” voxel conversions, but these tend
not to be aligned to any bounding box, which of course is a problem.

Below, you will see a Voxel representation for the liver of dimension d = 32.

(a) Original Point Cloud (b) Voxelized Mesh

Figure 2: Convert Meshes in R3 to Voxel Representations 2d×d×d

2.3 Use an Autoencoder

Once we have a voxel representation, we then take that representation through an autoencoder.

Figure 3: 32 Bit Voxel Encoding

2

3 Transition from Probability to Deformation Velocity

3.1 Differential Equation Formulation

Within [4], they restate this problem of identifying the boundary via integration over a flow field. We’ve taken the liberty
of reworking this formulation as the following boundary value problem: We need to learn a flow function v(x, t) := fθ(x, tz)
such that:

x′ = v(x, t)

x(0) = template shape

x(1) = target shape

3.2 ShapeFlow Method

The template shape described as x(0) is generated by the method described in [5]. Only one template is used to represent a
given shape space.

3.3 Euler’s Method Formulation

We recall Euler’s first order method of integrating as

xn+1 = xn +∆t · v(xn, t)

Therefore, we can rewrite this as the following computational block:

Figure 4: Euclid Block

Then we can allow a certain number of these blocks to be sequenced together, with an accompanying parameter of time:

Figure 5: Sequence of Euclid Blocks

This sequence is our final model of consideration.
To measure the performance of this model, we use the Chamfer Distance:

Definition 3.1. The correspondence-free, symmetric point-set to point-set Chamfer Distance C between randomly sampled

surface points of the target Pi ⊂ Xi and deformed, sampled surface points of the template PΦ = Φi(PT ⊂ T , 1):

C(Pi, Pϕ) =
1

2|Pi|
∑
xi∈Pi

min
x∈PΦ

∥xi − x∥2 +
1

2|PΦ|
∑

xi∈PΦ

min
x∈Pi

∥xi − x∥2

3

4 Comparison to Tamaz / Lüdke Work

Model Average Symmetric Surface Average Chamfer
Femur FlowSSM

Our Work 0.28572568± 0.048069667
Liver FlowSSM

Our Work 0.45721212± 0.099601954

References

[1] Tamaz Amiranashvili, David Lüdke, Hongwei Li, bjoern menze, and Stefan Zachow. Learning shape reconstruction from
sparse measurements with neural implicit functions. In Medical Imaging with Deep Learning, 2022.

[2] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling, 2019.

[3] Chiyu ”Max” Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas Guibas. Shapeflow: Learnable deformations
among 3d shapes, 2021.

[4] David Lüdke, Tamaz Amiranashvili, Felix Ambellan, Ivan Ezhov, Bjoern Menze, and Stefan Zachow. Landmark-free
statistical shape modeling via neural flow deformations. In Medical Image Computing and Computer Assisted Intervention
- MICCAI 2022, volume 13432, 2022.

[5] Chiyu ”Max” Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas Guibas. Shapeflow: Learnable deformations
among 3d shapes, 2021.

4

	Occupancy Probability Function
	How to Train the Latent Space?
	Procrustes Alignment
	Convert to Voxel Representation
	Use an Autoencoder

	Transition from Probability to Deformation Velocity
	Differential Equation Formulation
	ShapeFlow Method
	Euler's Method Formulation

	Comparison to Tamaz / Lüdke Work

