Furthering FlowSSMs Models

Greg DePaul, Ryan A. Anderson, Shizhe Xu, Suresh Kumar Choudhary,

July 2023

Abstract

We survey the necessary architectural develops that lead to the development of FlowSSM [\[1\]](#page-3-0). We also engineer a sequence model to perform the integration of the identified flow trajectories surrounding a mean shape.

1 Occupancy Probability Function

Our work began by exploring the origins of IM-Net [\[2\]](#page-3-1). Formally the architecture is as follows. IM-Net is a function

$$
f_{\theta} : \mathbb{R}^3 \times \mathbb{R}^d \to [0, 1]
$$

that takes a parameter θ . This parameter θ is formally the weights and biases of the following neural network:

Figure 1: IM Net

The output of the function is mean to represent the following:

 $f_{\theta}(x)$, latent space of shape S) = $\mathbb{P}(x \in S)$

This model is thusly named the occupancy probability model, as stated in [\[1\]](#page-3-0). In order to train this network, we need to define the following quantities:

• $S :=$ set of points sampled from the target shape

•
$$
\mathcal{F}(p) := \begin{cases} 0 & \text{if point } p \text{ is outside of the shape} \\ 1 & \text{otherwise} \end{cases}
$$

• To compensate for the density change, we assign a weight w_p to each sampled point p, representing the sampling density near p.

Now we can define the loss function to be :

$$
\mathcal{L}(\theta) := \frac{\sum_{p \in S} |f_{\theta}(p) - \mathcal{F}(p)|^2 \cdot w_p}{\sum_{p \in S} w_p}
$$

And therefore we optimize over this very loss function.

2 How to Train the Latent Space?

2.1 Procrustes Alignment

In order to develop a latent space, we need to consider the relative scope of this task. Do we want our shapes to be translationally invariant? Rotationally invariant? In order for a machine learning model to understand such a task, there would need to be the following changes:

- Develop an architecture that is invariant under rotations or translations (Very difficult theoretically)
- Augment the training set to account for all possibly achievable translations and rotations (Very expensive)

For the purposes of this project, we simply use a mean shapes (developed using traditional methods or more interesting methods [\[3\]](#page-3-2)), and then train only on these aligned shapes.

2.2 Convert to Voxel Representation

We then take every aligned shape and develop a voxel representation of that shape.

Definition 2.1. A voxel representation is a binary representation of a shape S within $2^{d \times d \times d}$. There is a surjection from the bounding box surrounding the shape S to the voxel representation. We denote d as the dimension of the voxel representation.

Note 2.2. The code I have developed for creating a 64 dimensional voxel representation takes quite a long time. I am confidant my code could be improved. Software packages like Open3D and Trimesh "offer" voxel conversions, but these tend not to be aligned to any bounding box, which of course is a problem.

Below, you will see a Voxel representation for the liver of dimension $d = 32$.

(a) Original Point Cloud (b) Voxelized Mesh

Figure 2: Convert Meshes in \mathbb{R}^3 to Voxel Representations $2^{d \times d \times d}$

2.3 Use an Autoencoder

Once we have a voxel representation, we then take that representation through an autoencoder.

Figure 3: 32 Bit Voxel Encoding

3 Transition from Probability to Deformation Velocity

3.1 Differential Equation Formulation

Within [\[4\]](#page-3-3), they restate this problem of identifying the boundary via integration over a flow field. We've taken the liberty of reworking this formulation as the following boundary value problem: We need to learn a flow function $v(x, t) := f_{\theta}(x, tz)$ such that:

$$
\begin{cases}\nx' = v(x, t) \\
x(0) = \text{ template shape} \\
x(1) = \text{ target shape}\n\end{cases}
$$

3.2 ShapeFlow Method

The template shape described as $x(0)$ is generated by the method described in [\[5\]](#page-3-4). Only one template is used to represent a given shape space.

3.3 Euler's Method Formulation

We recall Euler's first order method of integrating as

$$
x_{n+1} = x_n + \Delta_t \cdot v(x_n, t)
$$

Therefore, we can rewrite this as the following computational block:

Figure 4: Euclid Block

Then we can allow a certain number of these blocks to be sequenced together, with an accompanying parameter of time:

Figure 5: Sequence of Euclid Blocks

This sequence is our final model of consideration.

To measure the performance of this model, we use the Chamfer Distance:

Definition 3.1. The correspondence-free, symmetric point-set to point-set Chamfer Distance C between randomly sampled surface points of the target $P_i \subset X_i$ and deformed, sampled surface points of the template $P_{\Phi} = \Phi^i(P_{\mathcal{T}} \subset \mathcal{T}, 1)$:

$$
\mathcal{C}(P_i, P_{\phi}) = \frac{1}{2|P_i|} \sum_{x_i \in P_i} \min_{x \in P_{\Phi}} \|x_i - x\|_2 + \frac{1}{2|P_{\Phi}|} \sum_{x_i \in P_{\Phi}} \min_{x \in P_i} \|x_i - x\|_2
$$

4 Comparison to Tamaz / Lüdke Work

References

- [1] Tamaz Amiranashvili, David Lüdke, Hongwei Li, bjoern menze, and Stefan Zachow. Learning shape reconstruction from sparse measurements with neural implicit functions. In *Medical Imaging with Deep Learning*, 2022.
- [2] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling, 2019.
- [3] Chiyu "Max" Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas Guibas. Shapeflow: Learnable deformations among 3d shapes, 2021.
- [4] David L¨udke, Tamaz Amiranashvili, Felix Ambellan, Ivan Ezhov, Bjoern Menze, and Stefan Zachow. Landmark-free statistical shape modeling via neural flow deformations. In Medical Image Computing and Computer Assisted Intervention - MICCAI 2022, volume 13432, 2022.
- [5] Chiyu "Max" Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas Guibas. Shapeflow: Learnable deformations among 3d shapes, 2021.