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Abstract—We perform smoothing over the raw velocity spec-
trum data, and then apply methods of unsupervised classifi-
cation to emphasize features of nonuniformity. We then create
a heuristic-driven graphical overlay for accelerating subsurface
fault-line/mineral deposit identification based on reflection seis-
mology.

I. INTRODUCTION

Seismic Reflection is the method of sending a pulse (an
acoustic pressure wave) into the ground and detecting the
reflected energy using an array of sensors. Using the time it
takes for the repeated pulses to return to the surface, seismic
reflection reconstructs the stratigraphic features within the
crust. These can be reconstructed thanks to the difference in
acoustic impedances between layers at the interface between
different types of rock or other subsurface material. This type
of processing yields, among other things, measurements of
trapped hydrocarbons and natural gas within the shallow crust
as they disrupt reflected waves.

However there are issues with reconstructing the structure
directly. Due to noisy reflection, seismic pulse exploration only
roughly correlates with the underlying subsurface structure.
There are three types of noise: Natural Noise, Cultural Noise,
as well as Secondary Reflections. We want to develop upon
this scheme to reduce the noise over repeated pulses and
visually reconstruct the shallow geological structure. Further-
more, we hope to use this noise-attenuated dataset to make
progress towards characterizing chemical deposits. Our goal,
after inputting our data set, is to develop an algorithm with
the ability to distinguish interesting features of the shallow
structure and appropriate coloring, based on seismic data.
Currently, geologists spend copious time examining small
patterns in images such as those presented in Fig. 1 and
Fig. 2. By visually highlighting non-standard formations while
appropriately reducing the visual significance of repetitive
geological features, we hoped to contribute towards a less
time-intensive exploration process. Automating the character-
ization of irregular underground features would speed up the
processing and tedious analysis of geophysical exploration.

II. DESCRIPTION OF DATA SET

Our data comes from the National Centers for Environmen-
tal Information (under the National Oceanic and Atmospheric
Administration). Most of the data that we used was collected in
the late twentieth century by government researchers. The data
itself was all contained within SEGY formatted binary files.
SEGY is a format developed for the storage and transmission
of geophysical data. Within this context, the SEGY files
contain the “traces” acquired from sampling the geophones’
input (i.e. the reflected energy pulses mixed with background

noise) over a period of time after the pulse has been sent
out. Each trace consists of the received input for a single
geophone after a single pulse. These trace collections represent
completely raw measurements covering two axes: recorded
signal strength and time. In order to be used to accurately
depict subsurface structure, this data normally must go through
filtering, signal processing, adjustment, and merging. All of
these processes are intended to reduce noise, eliminate back-
ground interference/strengthen the pulse strength, and migrate
the data from a representation over time to a representation
over space (and thus enable mapping). Some of the most
basic processing leads from images like that in Figure 1 to
the processed image in Figure 2. Ours had to be congregated
and manipulated (mostly in Matlab) to get to Figure 1 and
then further processed before it could be interpreted. Figure 2
represents a noisy depiction of subsurface features and layers.
What we hoped to help distinguish were faults and other
anomalies that could indicate chemical deposits. Fault lines
usually present themselves as sheered formations within the
seismograph. Thus we hoped to highlight portions of these
images wherein horizontal striations become disrupted—either
forming an incline or becoming random noise. One key insight
was realizing that though not all disruptions of horizontal stri-
ations are significant, there are few to no significant portions
of seismic data that are normal horizontal striations. (Figure
3a).

It is this preprocessed data that the rest of our unsupervised
learning will take place on. Notice that visually Figure 2 is
seemingly uniform. However, upon applying machine learning
methods, we would hope this becomes visually revealing of
its structure.

Fig. 1.

Unprocessed Segy Data



Fig. 2. Imaged Shallow Crust after processing Segy Data

III. PREVIOUS WORK

Much of previous work in applying Machine Learning to
Seismic Reflection take a rather different approach to solve
this problem. Papers, like the one written by Evans and Wecht,
utilize a supervised learning algorithm over synthesized data in
order to develop a function that takes in rarefaction waves and
produces a velocity model that highlights faults. Our approach
on the other hand relies on detecting anomalies in real data
sets using unsupervised learning. Though previous worked
served as useful reference material, much of the work we
did was independent of previous attempts at analyzing seismic
reflection data.

IV. APPROACH TO SOLUTION

Data Input: Given that SEG-Y is a non-trivial yet standard
format, we eventually used prefabricated packages in Python
to retrieve the trace data from disparate files. This raw data
can be observed in Figure 1 above.

Preprocessing: Convert the seismic reflection data into a
digestible array of velocity data, as in Figure 2. In our case,
we chose to represent the data as an image file to ease
input/output. This array is then discretized into 20 by 20 boxes
that will provide us an outlet for our metric. We used the
Python Imaging Library (PIL/Pillow) to save, load, and show
images.

Metric Definition: The metric we developed was based on
a spectrum of variances. These variances are measured on a
20x20 pixel box (m=20). We developed this idea based on
the overwhelming repetition of these patterns within observed
crust models. Specifically, flat, contiguous crust tends to
exhibit the pattern in the first image of Figure 3. On the
other hand, as layers interact with each other, we start to see
a pattern that more closely resembles the second image in the
same figure. We wish to perform clustering to investigate the
overall connectedness of this space. Graphically, our metric
distinguishes regions as depicted in Figure 3. Notice that the
homogenous (notably: vertically homogeneous) pattern yield a
metric value close to zero. On the other hand, as you increase
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Fig. 3. Regions selected from Figure 2 that represent areas of interest and
their respective metrics.

the variance over vertical means of the horizontal colors, you
begin to approach higher numbers. As a sanity check, you can
see we included a fourth pattern not actually found within our
data that serves as a theoretical maximum of our metric.
Mathematically, we define the metric as follows. Initially
we consider the horizontal mean, over an m x m pixel square:
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Where v(;1,,45) is the RBG vector of the pixel (z+1,y+
7). This makes sense to use since were are working in black
and white data. Then we can define our metric as a sort of
variance:
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This metric now allows us to compare regions together more
effectively. We can now use K-Means to cluster regions of
similar weights, and converge to something visually revealing.
Clustering Algorithm:
1. Perform a motion estimation algorithm over the data set by
progressing a box metric over the entire set.
2. Each box then assigns a metric over that particular region
3. Regions of similar metrics are then clustered together.
4. Repeat until the metric labeling becomes stable. We used
the scikit-image library to run K-Means over the boxes.
Postprocessing: The identified features labels for each box
are then assigned colors randomly and these colors are drawn


https://python-pillow.org/
http://scikit-image.org/

over their respective boxes. These boxes are then unpackaged
to recreate a pixel-discretized version of the original image.
This colorized discretization is then overlaid to better empha-
size features of interest in the original image. These colors
should make apparent the features obfuscated by the original
trace image.

V. RESULTS

Upon running our algorithm, the model in Figure 2 results
in our overlay depiction in Figure 4. Examining, you’ll notice
that what was once a homogenous looking structure is now
categorized into three separate layers. Immediately one can
see that a chaotic portion of the middle layer spikes into the
top layer. This gray area highlights a structural abnormality,
which can be noted and further examined.

Fig. 4. Feature overlay applied to model in Figure 2

Fig. 5. Slight fault example

Fig. 6. Overlay applied to slight fault example

Fig. 7. Checkerboard effect due to pattern over-recognition

Another example of this algorithm is the case of a very
slight (less than 45°) fault, as in the crust in Figure 5. Our
algorithm creates the overlay shown in Figure 6. This overlay
highlights that there are two layers which have possibly
collided and created structural anomalies at the boundary
between the two.

VI. DISCUSSION

Applying the clustering algorithm requires assuming a cer-
tain number of clusters that should be made apparent. In all our
examples we typically select 3 or 4 clusters of patterns. This
number should be viewed as describing how many layers and
homogeneous portions you expect to find with the clustering
algorithm. Selecting more patterns results in a “checkerboard”
behavior, simply because you have allowed the algorithm to
distinguish so many patterns that nearly every component is
attributed as an interesting feature. This is evident in Figure 7
which represents an overlay over Figure 2 with the assumption
of 8 clusters. This example shows that the number of clusters



must be picked carefully. However, for datasets over successive
and physically proximal sections of earth this layer estimation
should hold relatively constant. Thus it can be set early on
and then reused without tuning.

VII. CONCLUSION AND CONTINUATION

We were able to apply clustering techniques to identify
features of interest in shallow crust models based on a custom,
heuristic based metric. This type of clustering relies heavily on
the geometry of the velocity models, specifically the uniform
striations between layers that indicate contiguous layering.
These types of patterns can then be clustered together in
an effective way to indicate relative locations of interesting
structures in the crust that may otherwise go undetected or
require tedious work to uncover.

Currently our algorithm relies on the motion estimation to
lie exactly on the block grid. In the future, it would be better
to allow more maneuverability. It would also be beneficial
to include a technique that could handle sloped inclines, as
evident in Figure 5.
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