MS&E 318 (CME 338) Project: USYMQR

Greg DePaul*
Stanford University
Computational and Mathematical Engineering
gdepaul @stanford.edu

Stephanie Sanchez*
Stanford University
Computational and Mathematical Engineering
ssanche2 @stanford.edu

June 12, 2018

Abstract

We have implemented Unsymmetric QR (USYMQR) for Julia. We show its performance with various inputs of ma-
trices and benchmark with the following methods: Least Squares QR (LSQR) and Biconjugate Gradients Stabilized
Method (BICGSTABL).

1 Introduction

1.1 Motivation

Large-sale numerical optimization is present in real-world applications and it is increasingly valuable to be able to
solve problems for these applications by preprogrammed algorithms. Many languages have created libraries to culti-
vate algorithms such as LSQR, MINRES, CG, etc. We have chosen to implement USYMQR to solve

min [[Az — b||2

where A is nxn as well as make the algorithm compliant for the IterativeSolvers library in Julia. We chose Julia
because the language is rapidly growing in popularity for its computational power. We also chose to write the algorithm
in the same fashion that Julia has written its libraries of functions, purely for the experience of writing framework-
backed code.

1.2 Related Work

Previous work begins with Saunder, Simon, and Yip’s paper [?] that proposes an algorithm for both USYMLQ and
USYMQR as well as sometime later producing F90 implementation for USYMLQ. There is also a MatLab implemen-
tation of USYMQR provided by Ron Estrin, Phd student at ICME, Stanford University.

1.3 Inputs and Outputs

For our implementation, we wanted to maintain similarity with Julia’s function call for MINRES. Therefore, we define
the function call:

%X, hist = usymqgr (A, b, maxiter, tol, log)

0 All authors contributed equally to this work.

Here, we given the least-squares problem min,, || Ay —b||, this function outputs the value = as well as a convergence
history. The defined functions has several options:

e maxiter

the maximum number of iterations allowed to converge.

e tol

the tolerance for which the res-norm must be within to satisfy the problem constraints. Mathematically:
Ay — bl| < €ror

e log

allows for logging within the convergence history object.

In the spirit of programming for the intention of integrating the algorithm within the Julia library, we sought
incorporating history search and functionality. Such functionality includes being able to make queries such as:

hist.isconverged
hist[:resnorm]

which provides insight to users on how well their systems may yield convergence.

2 USYMQR Algorithm

USYMQR effectively utilizes the orthogonal tridiagonalization algorithm for an unsymmetric matrix (see algorithm
??) and solves the least squares subproblem using QR factorization as described by [?] and shown in algorithm ??.

Algorithm 1 Orthogonal Tridiagonalization Algorithm for an Unsymmetric Matrix
1: Pick two arbitrary vectors b # 0, ¢ # 0

2: Setpp = qo = 0, B1 = ||||bIlll> v1 = Illl<||]], and p1 = %, q1 = ,Y—cl,maxiters =10%n
3: Fori=1,2,3,... maxiters

4 u = Aq; — Vipi—1

5: v=A"p; — Bigi—1

6 o =piu

7 U=1u—o;p;

8 V=0— Qg

Z Bivr = ||[lulll

10: Yitr = [[[[v]ll

11: if B;4+1 = 0 or ;41 = 0: stop
12: else pit1 = 57> Giv1 = 5.3

Algorithm 2 USYMQR Algorithm

1: Input: A > AT # A b, tol = le — 6, AAnorm = 0, 51 = ||||b]||], zo = ﬁ,’yprev =0,
%
0

2: 0 =,8§=",7hsl = 1,ql =q2 =0,wl = w2 =
3: Fort=1,2,3,... maxiters do

,T=0,Cprev = c=1,5 =0, maziters =10 *n

4: a, B,7, Uprev = Tridiagonalization(A)
5 o=c*S5+s*x«

6 r=-—5*%*S§+c*xq

7 T =8%7

8 S=cxvy

9: ift =

10: S=a«

11: S=v

12: = /T2 + 32

13 c="F/p

14 s=pB/p

15: rhsl,rhs2 = c¢* rhsl, —s x rhsl

16: W3 = (Uprey — 0 * W2 — Tprey xwl)/p
17: xr=x+rhsl xw3

18: wl = w2

19: w2 = w3

20: Tnorm = |rhs2|

21: ql = —Cprey * 8

22: qQ2=c

23: if |Thorm| < tol||t > maxiters||conditionl||condition2
24 stop

25: rhsl = rhs2

26: Yprev =Y

27: Cprev = C

We list the additional stopping conditions as
conditionl : Tporm * ||[Yprev * q1 + a % ¢2;7y * 2]|| |V AAnorm ryopm < tol

and
condition2 : rporm < tol x vV AAnorm + tol

where AAnorm = AAnorm + o? + 32 + 2. We also note that line 4 in algorithm ?? returns the updated values
from algorithm ?? for one iteration of the orthogonal tridiagonalization algorithm.
3 Solver Implementation in Julia

For our solver, we employed the Iterable design pattern. This requires reformatting an algorithm such that it fits within
the context of:

iterable = usymgqr_iterable!(x, A, b, ...)
while !iterable.converged ()

iterable = iterable.next()
end

We created a class in Julia, which we called usymqr _iterable, that provides methods next as well as converged.
An algorithm that is Iterable allows for other developers to later append components of their algorithms to the inner
iterations of USYMOQR, while maintaining the latest state of USYMQR’s run in order to continue to solve the current
least squares problem.

Implementing such an Iterable algorithm also allows us to call internal library functions of Julia to populate the
convergence history variable, which proved to be very useful in plotting these search histories.

4 Numerical Performance on Usymmetric Matrices

To test our solver, we measured the observed convergence history of a variety of ill-conditioned matrices available
from http://www.math.sjsu.edu/singular/matrices/. We chose the range of condition values from
relatively small condition numbers, to infinity in the case of the NASA / Barth matrix. The matrices we chose also
include symmetric and unsymmetric matrices.

We notice that for small matrices, BiCG worked well, but tended to never converge for any matrices with condition
numbers larger than 1e13. On the other hand, Table 1 shows that both USYMQR and LSQR both converge. However,
this table may be a little misleading, since the tolerance definitions of USYMQR and LSQR differ in such a way that
LSQR may terminate at a smaller Residual than ours.

Table 1: Number of iteration steps required to achieve the requested accuracy

Problem i_laplace_100 Regtools heat500 Regtools heat200 Regtools heat100 Hollinger / g7jac010 Lucifora / celll Nasa / barth
Condition Number 1¢°° 5.5 3.6e'? 7e%? 6e'® 1.7¢* 00

LSQR 31 165 1,000 1,000 1,549 2,446 580

BiCG 10 NC NC NC NC NC NC
USYMQR 34 1,582 1,094 551 NC 6,041 45,111

i_laplace_100/i_laplace_100 Residual Plot

—— USYMQR
LSQR
—— BICGSTABL

Residual

Iteration

Figure 1: N = 100, M = 100, and b = A1 where = is initialized to the zero vector.

Hollinger/g7jac010 Residual Plot

10° —— USYMQR
—— LSQR
—— BICGSTABL

Residual

200 400 600 800 1000
Iteration

Figure 2: N = 2880, M = 2880, and b = A1 where z is initialized to the zero vector.

http://www.math.sjsu.edu/singular/matrices/

Lucifora/cell1 Residual Plot

w0t b ——— USYMQR
—— LSQR

—— BICGSTABL

Residual

200 400 600 800 1000
Iteration

Figure 3: N = 7055, M = 7055, and b = A1 where z is initialized to the zero vector.

Regtools/heat_100 Residual Plot

—— USYMQR
LSQR

Residual

1 1 - S
200 400 600 800 1000
Iteration

Figure 4: N = 100, M = 100, and b = A1 where = is initialized to the zero vector.

Regtools/heat_200 Residual Plot

10 b —— USYMQR
— LSQR

Residual

Iteration

Figure 5: N = 200, M = 200, and b = A1 where x is initialized to the zero vector.

Regtools/heat_500 Residual Plot

—— USYMQR
10 LSQR

Residual
e

—

200 400 600 800 1000 1200 1400
Iteration

Figure 6: N = 500, M = 500, and b = A1 where = is initialized to the zero vector.

For the most part, we see that USMQR and LSQR tend to perform very similarly. For Lucifora, we see imme-
diately that USYMQR performs a lot quicker than LSQR. It could be that LSQR uses more resources as opposed
to USYMQR for relatively-good conditioned matrices. As the condition numbers increases, the algorithms tend to
perform identically.

Admittedly, we should have tested on rectangular matrices, but we’re confidant that USYMQR will perform com-
parably to its performance on square matrices.

5 Future Work

The algorithm we constructed only performs over real, floating-point
{Float32, Floato64d }

matrices in the Julia language. However, the iterative solvers integrated in the Julia language include support for

{Complex64, Complexl28 }

So if there is desire to integrate USYMQR into the Julia language library, it may be necessary to extend this support.

6 Acknowledgements

This project is done for CME 338: Large-Scale Numerical Optimization at Stanford University. Many thanks to
Michael Saunders for his help and guidance throughout this project. You can access the project at

https://github.com/gregdepaul /USYMQOR

References

[1] M. A. Saunders, H. D. Simon, E. L. Yip The Conjugate-Gradient-Type Methods For Unsymmmetric Linear Equa-
tions.

[2] Lothar Reichel, Qiang Ye A generalized LSQOR algorithm.

https://github.com/gregdepaul/USYMQR

